Metadata

Title	Hydrological forcing of a recent trophic surge in Lake Winnipeg
	Abstract
Publication general type	journal article
Project Name	['2f8c057e-a1df-4ff8-8a76-744212ea379a']
Keyword Vocabulary	Polar Data Catalogue
Keyword Vocabulary URL	https://www.polardata.ca/pdcinput/public/keywordlibrary
Theme	
Version	1.0
Publisher	Journal of Great Lakes Research
Date Published	2012
DOI	10.1016/j.jglr.2011.12.012

Authors

Authors 1

Author Name McCullough, Greg

Type of Name Personal

Email greg.mccullough@gmail.com

Affiliation Centre for Earth Observation Science - University of Manitoba

ORCID ID

Authors 2

Author Name Page, Stephan J.

Type of Name Personal

Email <u>Stephen.Page@dfo-mpo.gc.ca</u>

Affiliation Fisheries and Oceans Canada

ORCID ID

Authors 3

Author Name Hesslein, Raymond H.

Type of Name Personal

Email hesslein@mymts.net

Affiliation Freshwater Institute - Fisheries and Oceans Canada

ORCID ID

Authors 4

Author Name Stainton, Michael P.

Type of Name Personal

Email

Affiliation Freshwater Institute - Fisheries and Oceans Canada

ORCID ID

Authors 5

Author Name Kling, Hedy J.

Type of Name Personal

Email hedy.kling8@gmail.com

Affiliation Algal Taxonomy and Ecology Inc.

ORCID ID

Authors 6

Author Name Salki, Alex G.

Type of Name Personal

Email

Affiliation Freshwater Institute - Fisheries and Oceans Canada

ORCID ID

Authors 7

Author Name Barber, David G.

Type of Name Personal

Email david.barber@umanitoba.ca

Affiliation Centre for Earth Observation Science - University of Manitoba

ORCID ID

License Name	Other (Not Open)
Licence Type	Restricted
	other-closed
Licence Schema Name	SPDX
Licence URL	https://spdx.org/licenses
Awards	
Related Resources	
Language	English

Data and Resources

URL https://www.sciencedirect.com/science/article/abs/pii/S0380133011002656?via%3Dihub

Name Hydrological forcing of a recent trophic surge in Lake Winnipeg

Description

Nutrient enrichment leading to eutrophication of lakes is frequently attributed to increasing anthropogenic loading to the watershed. We use a phosphorus mass balance model to demonstrate that a discharge increase in a major tributary contributed more than increased anthropogenic loading to a recent sudden doubling of total phosphorus (TP) and a shift to a cyanobacteria-dominated plankton population in Lake Winnipeg. Runoff from the Red River watershed rose abruptly during the mid-1990s. The decadal mean discharge has since been more than 50% higher than for any previous decade in the century-long record. Widespread spring flooding has become common. TP concentration roughly doubles during floods, magnifying the effect of higher runoff on downstream phosphorus loading. Concentrations of both dissolved and particulate phases are raised by flooding. Over 90% of dissolved phosphorus downstream of flooded farm land in one tributary was in the form of highly bioavailable orthophosphate. From 1994 to 1999, TP in the lake rose from less than 30 to more than 50 mg m- 3. It has since remained over 50% higher than before the mid-1990s. We use the phosphorus model to demonstrate that the change in Red River discharge alone would have caused a sustained 32% increase compared to when phosphorus was first routinely monitored in the 1970s, while direct increases in the rate of anthropogenic loading alone would have caused only a 14% increase. It required both increased loading to the land and higher runoff to produce the observed increase in TP in the lake.

Format HTML

Resource Category

documents