BaySys Team 4

- Produced the first comprehensive estimate for CO₂ exchange budget for Hudson Bay. The space-time variation in fluxes requires an understanding of moderating factors associated with the Bay's physical, biological and biochemical systems, linking ALL BaySys Teams.
- Produced the first comprehensive examination of OA state, and assessment of OA risk. As OA is linked to pCO_{2sw} (and pH), current and future assessments are tied to processes associated with a ALL BaySys Teams.
- BaySys research has shown the influence of rivers on carbon dynamics of the downstream marine system depends on the quality and quantity of delivered C (inorganic and organic) which varies regionally around the bay. While affects are reflected in proximity to river plumes, the integrated impact of rivers and river carbon is small if not negligible on the Bay's source/sink status.
- pCO_{2sw} reflects the net response of several processes, some acting to push pCO_{2sw} in opposite directions. While locally, or short term, pCO_{2sw} can be dominated by remineralization of OC_{terr} delivered by rivers & OC_{mar}, and/or primary production, areally-weighted pCO_{2sw} across the bay appears overwhelming determined by thermodynamics (sea ice, T and salinity) through their impact on carbonate equilibria and gas exchange. Questions on the net influence moderating factors across seasons remain, requiring a more thorough assessment of modelled fields and the addition of seasonally-balance observations.

Specific examples ->

The CO₂ Source/Sink Balance of Hudson Bay

Shelf sea	Area (10 ³ km ²)	Mean depth (m)	River inflow (Km ³ yr ⁻¹)	Sea-air CO ₂ flux (mmol m ⁻² day ⁻¹)	Season	Reference
Barents Sea	1512	200	463	-11.1	Annual	Lauvset et al. (2013)
Kara Sea	926	131	1133	-18.3 to -32.8	Summer-Fall	Pipko et al. (2017)
Laptev Sea	498	48	767	-0.8 to -15.7	Summer-Fall	Pipko et al. (2017)
E. Siberian Sea	987	58	213	0.8 to 11.5	Summer	Pipko et al. (2011)
Chukchi Sea	620	80	78	-14.8	Annual	Bates (2006)
Beaufort Sea	178	124	330	-10.0	Summer	Murata and Takizawa (2003)
Canadian Archipelago	1490	290	270	-3.0	Annual	Ahmed and Else (2019)
Hudson Bay	841	150	900	-0.73 1.98	Fall Summer-Fall	Else et al. (2008a) Else et al. (2008b)
Hudson Bay & Hudson Strait	1041	150	900	-4.8 -4.3	Spring-early Summer Open water	Ahmed et al. (in review)

Hudson Bay is a weak CO₂ sink

Ahmed, et al (in prep)

- Different methodologies produced slightly different estimates for the ice-free CO₂ budget.
- Highest confidence based on an empirical relationship for pCO_{2sw} incorporating Tsw, sal, FDOM⁺ and *Chl a* using ship-, reanalysis-, and satellite-based fields.
 We estimate net CO₂ uptake for ice-free Hudson Bay to be -3.3 (±1.2) TgC

Ahmed, Else, Butterworth, Capelle, Guéguen, Miller, Meilleur, Papakyriakou (in review)

While an estimate based on our <u>current</u> satellite inversion model <u>lacks biology</u>, it provides realistic space/time assessment. Mean flux appears well represented, however missing is variability relative to observation. Uptake in spring, early summer and fall are in excess of summertime outgas. Hudson Bay remains a CO₂ sink of -2.3 TgC (~-0.9 mmol m⁻² day⁻¹). *Ahmed*, et al (in prep)

⁺ FDOM=fluorescing dissolved organic matter

First order impacts of rivers on inorganic carbon systems appears local in Hudson Bay

Rivers import pCO₂ and DOC

Capelle, et al. (in prep)

- Carbon load of rivers depends on source \geq
- Rivers export DOC and pCO₂, but dilute TA and DIC \geq

Kazmiruk, et al. (in review)

Depth Section Distance [km] 100 200 Section Distance [km] sat are Depth 100 200 Section Distance [km] 200 200 Section Distance [km] 300 100 pCO2 50.57 58'N Section Distance [km] 57.5'N 300 Capelle, et al. (in prep) 92 W 91'W \$0'10

DIC

TA

2200 2100

Impact of OC_{terr} from rivers is realized locally \geq

Riverine DOC degrades to CO₂ thoroughly and fast \geq

Team 1

34

Local impacts can be important on the inorganic carbon in Hudson Bay

Long Transect

250

44

80'W

497

##"W

Section Distance [km]

Inorganic Carbon Species: Long Transect

Sal_psi

0.05

sat are

pCO:

58.5 58 \$7.8

Untangling the impact of rivers on the inorganic carbon system of Hudson Bay

Rivers import pCO₂ and DOC

> Role of OC_{terr} from rivers is to raise pCO_2 and lower Ω_{ar} in the **coastal surface waters** – promotes outgassing and OA

CC_surf = coastal corridor surface CC_deep = coastal corridor deep Int_Surf = Interior surface Int_Deep = Interior deep

- > However, rivers have little effect on both pCO₂ and Ω_{ar} of the coastal zone and interior when the river influx of DIC and TA is considered in addition to OC_{terr}. Impact of dilution.
- Impact of rivers on the carbon system is seen locally based on observation and simple box-model

Capelle, et al. (in prep)

BLING – Link to Team 6

The Biogeochemistry with Light Iron Nutrient and Gas model (BLINGv0; Galbraith *et al.* 2010; Galbraith *et al.*, 2015) is a phosphorus based biogeochemical model that includes iron, nutrient and light limitation. This model is a simplified Nutrient, Phytoplankton, Zooplankton, Detritus (NPZD) biogeochemical model with only ocean (pelagic) components that also models the carbon cycle (BLINGv0 +DIC). BLING was designed to reduce computational demand by only calculating 4 prognostic tracers. These are dissolved inorganic carbon (DIC), total alkalinity concentration (TALK), dissolved oxygen concentration (OXY) and diagnosed chlorophyll-a concentration (CHLa). The diagnostic variables calculated are the rates of matter flux between the prognostic variables.

Annual Results from BLING: Boundary <u>Above</u> the Mixed Layer

0.5

-0.5 ប

- Temperature increase is similar for respecting forcings MIROC > MRI
- Salinity decreases: MIROC shows little difference in salinity for regulate and naturalized, (regulated lower than naturalized) but when subjected to MRI salinity drops, more slow for regulated
- > TA increases slightly for naturalized should follow trends in salinity
- DIC increases appears a stronger function of climate forcing than regulations
- pH shows a decrease in all scenarios results from the fact that atmospheric CO₂ is increasing; rate of decrease appears a stronger function of climate forcing
- DIC flux virtually no difference for regulated and unregulated; MRI forcing however shows greater uptake relative to MIROC5

