# CALIBRATION CERTIFICATE

NAME : COMPACT-CT

MODEL : ACT-HR

SERIAL No. : 1301

Parameter : Temperature

Conductivity

## Temperature Calibration Certificate

Model

ACT-HR

Serial No.

1301

Date

December 01, 2015

Location

**Production Section** 

Method

Calibration equation is determined from third order regression of samples of the

reference temperature against A/D values. Samples are taken at approximately

3, 10, 17, 24, and 31 °C.

1. Equation

Instrument temperature[°C] = A+B × N+C ×  $N^2$ +D ×  $N^3$ 

N: A/D value

2. Coefficients

-8.057364e00 A =

1.074636e-03 B =

-8.430444e-09

D = 9.245523e-14

3. Calibration results

| Reference<br>temperature<br>[°C] | A/D value | Instrument temperature [°C] | Residual<br>error<br>[°C] | Acceptance [°C] | OK/NG |
|----------------------------------|-----------|-----------------------------|---------------------------|-----------------|-------|
| 2.658                            | 10775     | 2.659                       | 0.001                     | ±0.050          | ÖK    |
| 9.862                            | 18892     | 9.859                       | -0.003                    | ±0.050          | OK    |
| 16.647                           | 27024     | 16.652                      | 0.005                     | ±0.050          | ОК    |
| 23.662                           | 35566     | 23.659                      | -0.003                    | ±0.050          | OK    |
| 30.398                           | 43560     | 30.399                      | 0.001                     | ±0.050          | ОК    |

#### 4. Verification

Criteria of iudgement

Residual error of the instrument temperature at arbitrary point is within the

accentance value

| - | ludgement           | acceptance value |               |            |           |
|---|---------------------|------------------|---------------|------------|-----------|
|   | Reference           | Instrument       | Residual      | Acceptance | Judgement |
| ı | temperature<br>[°C] | temperature [°C] | error<br>[°C] | [°C]       | Judgement |
| ŧ | 19.715              | 19.715           | 0.000         | ±0.050     | Passed    |

Examined

M. Kano a. Fukuoka Approved

### Conductivity Calibration Certificate

Model

ACT-HR

Serial No.

1301

Date

December 01, 2015

Location

**Production Section** 

Method

Calibration equation is determined from linear regression of samples of the

reference conductivity against A/D values. Samples are taken at approximately

20, 30, 40, and 50 mS/cm.

1. Equation

Instrument conductivity[mS/cm] =  $A+B \times N$ 

N: A/D value

2. Coefficients

-6.628440e-01

B = 1.010598e-03

3. Calibration results

| Reference<br>conductivity<br>[mS/cm] | A/D value | Instrument conductivity [mS/cm] | Residual<br>error<br>[mS/cm] | Acceptance [mS/cm] | OK/NG |
|--------------------------------------|-----------|---------------------------------|------------------------------|--------------------|-------|
| 19.409                               | 19862     | 19.410                          | 0.001                        | ±0.050             | OK    |
| 30.456                               | 30792     | 30.455                          | -0.001                       | ±0.050             | OK    |
| 39.981                               | 40216     | 39.979                          | -0.002                       | ±0.050             | OK    |
| 51.492                               | 51609     | 51.493                          | 0.001                        | ±0.050             | OK    |

#### 4. Verification

Criteria of iudgement

Residual error of the instrument conductivity at arbitrary point is within the

acceptance value.

| Jaagement |                        |                         |                   |            |           |  |
|-----------|------------------------|-------------------------|-------------------|------------|-----------|--|
|           | Reference conductivity | Instrument conductivity | Residual<br>error | Acceptance | Judgement |  |
|           | [mS/cm]                | [mS/cm]                 | [mS/cm]           | [mS/cm]    |           |  |
|           | 45.752                 | 45.750                  | -0.002            | ±0.050     | Passed    |  |

Approved

m. Kano a. Fukuo ka