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Team 1: Objectives from proposal

GENERAL OBJECTIVE:

» CLIMATE VS. REGULATION: Understand and differentiate between how
changes in climate variability and regulation affect processes related to mass
and energy exchange between the freshwater, marine, sea ice and atmosphere
systems.

HYPOTHESIS:

» HI.1: The spatial and temporal pattern of Bay-wide sea ice growth and decay is a dominant
factor forcing freshwater-marine coupling processes in Hudson Bay.

» HI1.2: The seasonality and magnitude of river runoff is a dominant factor controlling
freshwater-marine coupling processes in Hudson Bay.

» HI1.3: Climate variability and change directly affect the vertical mixing and horizontal
distribution of fresh and marine waters in Hudson Bay.



More specific objectives of Team 1

(J PROCESS UNDERSTANDING: Advance the understanding of the physical
processes (related to mass and energy exchange between the land, marine, sea
ice and atmosphere) in the climate and marine system that control the input and
distribution of freshwater in Hudson Bay.

1 FRESHWATER TRACING: Determine the distribution (horizontal and vertical) and
origin (Arctic inflow, sea ice melt, or river runoff) of freshwater in Hudson Bay
over the seasonal cycle. Various tracers are used: salinity, CDOM, oxygen

isotope ratios, and remote sensing.

) DOCUMENT CHANGES: Collect new data and use available observational
records (such as remote sensing products, climate reanalysis products,
oceanographic mooring and survey data, weather station data) to characterize
changes and variability in the Hudson Bay climate, marine and sea ice systems.

(1 MODEL VALIDATION and UTILIZATION: Contribute to NEMO ocean modelling
efforts by Team 6 to address questions related to interannual, bay-wide scale
changes caused by climate variability, trends, and hydroelectric regulation.

(J CONTRIBUTE DATA: Contribute baseline oceanographic data for Teams 3 to 5.



Team 1: Results and updates

Task 1.1 Winter Estuary Survey
Task 1.2  Spring/Summer Survey

Task 1.3 Moorings

Task 1.4 Remote Sensing

The research of Team 1 involve the study of the
i) estuarine and coastal hydrographic regime,

ii) frends and dynamics of the sea ice cover, and
iii) offshore bay-wide hydrographic regime.

This is done through four tasks: 1.1-1.4. Results from all
tasks are used to address each objective of Team 1.

Task 1.5 NEMO modelling = Team 6



Team 1: Results and updates

Task 1.1  Winter Estuary Survey
The goal of Team 1

Task 1.2 (i) characterize the ice cover in the two estuaries: e.g., morphology, growth/decay,
physical properties...
Task 1.3 (ii) study sub-ice freshwater-marine mixing and circulation processes in the estuaries of

Nelson River and Churchill River.

Task 1.4
Field work COMPLETED

Manuscripts

* Ice dynamics and drift using beacons and satellite products
(Lukovich, Babb et al, in prep).

* Sea ice thickness distributions in Nelson and off Churchill (also
includes past data (Babb et al, planned)

* Storm-induced landfast ice extent increase, tidal dampening and
hydrography in Nelson Estuary (Gupta, Kirillov et al, planned)



Team 1: Results and updates

Task 1.1 Spring/Summer Survey
Obijective of Team 1 is to study processes governing

Task 1.2 (i) the mixing of freshwater with seawater (offshore and estuaries)

Task 1.3 (ii) the horizontal distribution of freshwater content throughout Hudson Bay and Hudson
Strait, and in greater detail in coastal waters near river estuaries surrounding the

Task 1.4 Bay. Include distinguishing between sea ice melt and river runoff sources of
freshwater.

(iii) Sea ice physical and electromagnetic properties during the melt.
(iv) Mooring operations

Field work COMPLETED

Manuscripts

* Influence of surface sediment on passive microwave signatures of first year
sea ice (Harasyn et al., 2019, published)

*  Characteristics of thick, fresh sediment-laden ice (Barber, draft)

*  Algorithm validation and remote sensing of CDOM/TSS to evaluate
Nelson/Hayes R. plume dynamics (Basu, draft)

* In-situ data (S, CDOM, O18) + remote sensing of CDOM/TSS to trace
river runoff in Hudson Bay (Basu, in prep.)

*  Study of wave characteristics in Hudson Bay /Nelson Estuary during ice
covered and open water periods (Campbell, prep.)



Team 1: Results and updates

Task 1.1
Task 1.2

Task 1.3

Task 1.4

Moorings

to complement and extend ice- and data collected during field campaigns

Understand temporal variations in ice and ocean properties
to assist in comparing fluvial-marine mixing and sediment transport
processes in open water and sub-ice conditions.

Field work COMPLETED with recovery of 4/5 moorings. Baysys mooring

components redeployed in Belcher Islands and Southampton Island.

Manuscripts

Ice thickness E-W asymmetry across HB (Kirillov et al., Submitted)
DVM of zooplankton controlled by light and tides (Petrusevich, submitted)
Wind-driven ocean dynamics at ANO1 (Dmitrenko, draft in prep)

Evidence of freshening and increased stratification from year-long
timeseries (Ehn, in prep)

Dynamic properties of of sea ice: a view from below (Babb, in prep)

Wave characteristics in HB/NE during ice-covered and open water periods
(Campbell, planned)

Temporal changes in hydrography and sedimentation at mouth of JB
compared to HB wide and LG estuary (Peck, planned)



Team 1: Results and updates

Task 1.1

Task 1.2
Task 1.3

Task 1.4

Winter Estuary Survey

Spring/Summer Survey

Moorings

Remote Sensing

(i)

(ii)

(iii)

(iv)

(v)

(vi)

Microwave satellite data for the timing and extent of sea ice
formation and decay (Hochheim and Barber, 2014; Andrews et al

2017).
Ice thickness using satellite altimetry (Landy et al., 2017, published).

Identification and characterization of the polynya in NW Hudson
Bay (Bruneau, Babb et al.,, Manuscript in prep.)

Optical satellite data will be used to map seasonal and inter-
annual patterns of the river plume (Basu et al., Draft)

SST pattern and trends over 2008-2018 (Mukhopadhyay,
Manuscript in prep.)

Landfast sea ice patterns and trends using CIS ice charts (Guptaq,
Manuscript in prep.)



3.1.5 Gaps and Recommendations

To accurately estimate the sea ice transport within HBS, reliable data on ice thickness
and drift is required. However, ice drift products in the Hudson Bay derived from
satellite data need to be additionally qualified. We found that NSIDC 25-km Polar
Pathfinder sea ice motion vectors tend to underestimate the ice drift speeds, while the
EUMETSAT OSI-405-c ice drift product has low spatial resolution of 62.5 km.

From intercomparison of NEMO model and in-situ mooring dataq, it was found that the
NEMO model tends to overestimate the rate of vertical mixing. This leads to

considerably deeper penetration of seasonal signal of both temperature and salinity,
and shift of seasonal maximum at depth to earlier dates. As a result, the freshwater
cycle in surface and bottom layers might be not represented well in the model results.
Further work is needed to evaluate the vertical mixing in the model.

We gained limited observational understanding of Hudson Bay deep water

properties, ventilation, renewal during Baysys field programs. Still cannot say % of
Pacific vs Atlantic source with more certainty.

Satellite estimates of freshwater-marine interactions in estuaries and offshore limited

by few data points with coincident measurements of all needed variables: remote

sensing reflectance, apparent optical properties, and the inherent optical properties
of the optically active substances (CDOM, sediment, phytoplankton). Majority of past
field experiments have focused on subsets of the required data. Future fieldwork
should emphasize the collection of complete optical datasets across the coastal
continuum spanning the river mouth, across the estuary to the offshore marine waters.



3.1.5 Gaps and Recommendations

Due to a lack of match-ups between satellite imagery and in-situ observations (due

to clouds and limited field work opportunities), future work would benefit from the
development of a high-resolution numerical model for the Nelson-Hayes estuary.
Manitoba Hydro has conducted such modelling using MIKE by DMI, however, open
source models such as Delft3D or FVCOM would promote broader scientific studies of
plume spreading and dispersion during various conditions.

Volume and freshwater transport in and out of the Hudson Bay through Hudson Strait
and Fury and Hecla Strait are based on very limited data, that are decades old.
Considering changes to Arctic-wide freshwater content, new monitoring of gateways

seems necessdary.

The tidal flaw leads along the landfast ice edge in Hudson Bay are dynamic areas
where open water form semi-diurnally and sites of frequent, rapid ice growth. Ice
within the flaw lead becomes heavily deformed, often forming grounded ridges on the
tidal flats, that may enter the mobile pack ice and drift through the melt season. The
formation and deformation of deformed ice within the flaw leads has not been

directly studied and would be of both regional and broader interest.

On a broader scale, in-situ observations of ice thickness are still a limitation in

Hudson Bay and would be beneficial to validate the spatial variability identified in the
remotely sensed fields of ice thickness. Satellite altimeter sea ice products will need
field validation.



RESULTS

Tasks 1.1-1.2 — Ship-based surveys
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Task 1.1-1.2: All CTD data retrieved during BaySys

(Des Groseilliers, Henry Larsen, Nanuk, Churchill helicopter, Amundsen)

0 g
20
40
60
80 B
100 : . . . o
10 15 20 25 30 35
Salinity [psu]
65°N
60°N
55°N

9w 90w 85W 80w 75W

20

40 -

Depth [m]

60

80

100

Ocean Data View

-
(41

5 | 10
Temperature [0C]



Published paper: Harasyn et al 2019: The influence of surface
sediment presence on observed passive microwave brightness
temperatures of first year sea ice during the summer melt period
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Tasks 1.1 & 1.3 — Winter estuarine survey + moorings
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Tasks 1.1 & 1.3 — Winter estuarine survey + moorings
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Tasks 1.1 & 1.3 — Winter estuarine survey + moorings
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Task 1.1 —=Winter helicopter survey

19|
1 February 1 =15, 2017
1 Team 1 — Dave B., Jack & Nic
1 Team 1 objectives:

Collect in situ ice and water samples

14 ice beacons + 3 IMB’s deployed (two
failed in late Feb) and transmitted position
every hour.
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RESULTS

Tasks 1.3 — Moorings



Task 1.3 — Moorings

5 Deployed during Fall cruise in Oct 2016 from onboard CCGS Des Groseilliers
3 Recovered and redeployed during November 2017 (Sergei, Vlad, Chris)
4 recovered during September 2018 using R/V William Kennedy (Vlad, Keesha)
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Task 1.3 — ANOT mooring results
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Task 1.3 — NEO2 and NEO3 mooring results
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Backscatter
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Manuscript in progress: Dmitrenko et al., Wind forcing
controls bay-scale circulation in Hudson Bay

Sea level at Churchill, and NCEP Sea level at Churchill, and at
meridional wind and velocity time series moorings ANO1 and NEO2
at mooring ANO1
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* In response to northerly wind, a surface Ekman on-shore transport and
associated increase of the sea surface heights over the shelf produce a cross-
slope pressure gradient that facilitates an along-slope southward flow



Manuscript in progress: Dmitrenko et al., Atmospheric forcing
facilitates cross-shelf exchange in Hudson Bay

Sea level at Churchill, and NCEP meridional wind and Generation of thermohaline anomalies in response
temperature and salinity time series at mooring ANO1 to the downwelling favorable northerly wind
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Atmospheric forcing controls cross-shelf exchange in Hudson Bay



Kirillov et al., Submitted: Atmospheric forcing drives the winter sea
ice thickness asymmetry of Hudson Bay (Tasks 1.3 & 1.4)
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Kirillov et al., Submitted: Atmospheric forcing drives the winter sea
ice thickness asymmetry of Hudson Bay (Tasks 1.3 & 1.4)
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Kirillov et al. : NEMO model validation with mooring data
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TRIAXYS wave buoy in the MIZ of Nelson estuary (NEO2 position)
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ANO] Waves (Yanique Campbell, planned)
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RESULTS

Task 1.4 — Remote Sensing



Characterization of the Nelson/Hayes River plume dispersion in Hudson

Bay: A quantile-based statistical approach using ocean color data

Manuscript in preparation: Basu et al. (Task 1.4)

Research Question: How far does the Nelson River plume influence the Hudson Bay?

Rationale
= This study characterizes the Nelson River
dispersion in Hudson Bay in terms of its spatial extent

plume

in different tidal condition.

® The result of this research work directly feeds to the
objectives of BaySys Team: 1 To determine the effect
of magnitude of river discharge on the freshwater
distribution in Hudson Bay.

Methodology

= Retrieved Color Dissolved Organic Matter (CDOM)
and Total Suspended Sediment (TSS) used as proxy to
characterize river plume dispersion using optimized
MODIS satellite derived Remote Sensing Reflectance

(R,).
678

as% (412 nm) = 3.08651 - R3%* (E) —0.5825

TSSS%(g/It.) = 811.11 - R§%(678) + 2.442

=  Quantile thresholding (0.95 to 0.5) of aCDOM and TSS conc.
for each of the successive cumulative area of MODIS image

(Fig.1).

Radial Distarce from
Riwier moth (m}

Hudson Bay

Nelson River

Cumulstive Area

James Bay

0-50 km threshold of @, (412nm) &
TSS (g/L): Reference plume signal
modeled for dilution



Dilution of CDOM and TSS from Nelson River mouth In-situ CTD data
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Sea surface temperature (SST) trends and pattern from 2008-2018
*  Mukhdopadhyay et al. (draft completed).

* Extend and update work by Galbraith and Larouche (2011)
that analysed up to year 2009.

Warming trend in SW HB/Nelson, but cooling in East HB

* Relate to sea ice break-up patterns

TREND IN SST
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- k ' * A steady increase in SST was
(e, B i .
g ¥ observed in the western and
L southwestern coastal regions in
Lo
! Air temperature y HUdson qu Clnd James qu.
(2 Mt) changes - r' ' b
g overthe period. 4 * A decreasing SST trend over the 10
3 e .
—— [ L | year period was observed along
- 5/ ear X
“ . n e the central and eastern Hudson Bay
Mean of Tmax Mean Day of Tmax & Hudson Strait.

* Areas with increasing SST gradient
are associated with trend towards

earlier sea ice breakup, while

“ d - opposite true for areas with
e % .
' - decreasing trend.
E Dagrea & . . . .
oy 101081 * Sea ice concentration is decreasing
B
across the HBS over last decade,
16 Sept g 258081
i except the northeastern Hudson
Slope of Tmax uly B 207626

Slape of Mean Day of Tmax Bay and eastern Foxe basin.

* Western + southern coastal region
of Hudson Bay and west coast of
James Bay, along with west coast of
Foxe Basin, show significant
positive trend in SST over 2008-
2018.
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Ice thickness distributions for April 2014

78 142

Task 1.4 — Remote sensing

l g of Environment 200 (2017) 281-294 |

Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse
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_:.Bay Polynya:
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Sea ice thickness in the Eastern Canadian Arctic: Hudson Bay
Complex & Baffin Bay
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Jack C. Landy™>™*!, Jens K. Ehn®, David G. Babb?, Nathalie Thériault®, David G. Barber®

2 Centre for Earth Observation Science, Riddell Faculty of Environment Earth and Resources, University of Manitoba, Winnipeg, Canada
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Investigation of multiyear variations in landfast ice cover in the Hudson Bay region.

Kaushik Gupta et. al (Manuscript in preparation) [Task 1.4]

Meth °d°|°gy: The trend of landfast ice break-up data 2006 to 2018

I * weekly ice charts from Canadian Ice Service,
IceSat-2 altimetry products, RADARSAT imageries
and NASA Worldview.

* daily weather records from Environment Canada’s
meteorological service

* snow melt date products from the National Snow
and Ice Data Centre (NSIDC, USA).
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