Team 6: NEMO Modelling for the Hudson Bay Complex

Credit: NASA Earth Observatory

People. Discovery. Innovation.

BaySys objectives

"To examine the influence of freshwater on Hudson Bay marine and coastal systems"

"To provide a scientific basis to separate climate change effects from those of regulation of freshwater on physical, biological and biogeochemical conditions in Hudson Bay"

Team 6 objectives

- To provide output in the Hudson Bay Complex, in the form of ice and oceanographic variables relevant for BaySys
 - Based on different scenarios for climate change (CMIP) and runoff (HYPE)
- To investigate the relative impacts of climate change and regulation on freshwater-marine coupling within the HBC from a modeling perspective
- To provide an integrated observational-modeling freshwater/marine framework for model-data comparison at two scales
 - Local (~ 20 100 km; estuary and coastal)
 - Regional (~100 1000 km; bay-wide) scales
- To improve our understanding of physical mechanisms responsible for observed phenomena
 - To improve representation of these processes for future simulations.
- To investigate and improve our understanding of freshwater dynamics, as well as momentum, mass and heat flux in HBC in response to climate change and regulation

ANHA NEMO Configuration in the HBC

Hudson Bay Complex

Model: NEMO 3.6 (ocean) LIM2 + EVP (sea ice)

Resolution: ¼ degree (~ 10 – 15 km within Hudson Bay)

Initialization: 3D T, S

Atmospheric forcing:

- Surface temperature, humidity, u_{atm}, v_{atm}
- precipitation (including snow)
- radiation (SW & downwelling LW)

OBC: U_{ocean}, V_{ocean}, T & S

- **0 Runoff in HBC:** HYPE (Team 2)
- 0 NO temperature & salinity restoring
 - Tides:

Sea Ice Thickness Comparison with BaySys Moorings

Figures courtesy Sergei Kirilov

3 Published Papers so far

- I: Modelling Sea Surface Temperature (SST) in Hudson Bay Complex Using Bulk Heat Flux Parameterization: Sensitivity to Atmospheric Forcing and Model Resolution (Atmosphere-Ocean)
 - Shabnam JafariKhasragh, Jennifer V. Lukovich, Xianmin Hu, Paul G. Myers, Kevin Sydor and David G. Barber

Q . How well the model represents the SSTs over HBC?

II: Sensitivity of freshwater dynamics to ocean model resolution and river discharge forcing in the Hudson Bay Complex, 2019, NA Ridenour, X Hu, SJ Khasragh, JC Landy, JV Lukovich, TA Stadnyk, ..., Journal of Marine Systems

Green: river Blue: surface fluxes Red: advected FW Circles: FW storage

Seasonal FW budget for the

КШ

Freshwater (volume) components in mSv

III: Revisiting the Circulation of Hudson Bay: Evidence for a Seasonal Pattern,
 2019, NA Ridenour, X Hu, K Sydor, PG Myers, DG Barber, Geophysical Research
 Letters, 46, https://doi.org/10.1029/2019GL082344

AVISO Absolute Dynamic Topography and geostrophic currents for summer (a, July-Sept) and fall (b, Oct-Dec)

- Our model (ANHA12) sea surface height and geostrophic velocities for spring (c, May-June), Summer (d),
- and fall (e).

Numerical Improvement: Tides

- Technical changes:
 - New coordinate system: z*
 - Variable dz
 - New time split scheme
 - Barotropic ts: 6 seconds
 - Baroclinic ts: 1080 seconds

- Better mixing at the surface
- Better mixing at the bottom
- Addition of the tidal currents

Tide Representation with ANHA4

Tide Representation with ANHA4

Numerical Improvement: Land masking

No land masking

Land masking

• Up to 30% more efficient for the same number of CPU requested

BaySys climate simulation selection to address uncertainty

Marco Braun, Ouranos

Historical/Future Experiments

Historical Control

Future

- ERA-Interim
 MIROC
- MRI-CGCM3
- GFDL-CM3

- MIROC Regulated RCP 4.5
 MIROC Naturalized RCP 4.5
 MIROC Regulated RCP 8.5
 MIROC Naturalized RCP 8.5
 MRI-CGCM3 Regulated RCP 4.5
 MRI-CGCM3 Naturalized RCP 4.5
 MRI-CGCM3 Regulated RCP 8.5
 MRI-CGCM3 Naturalized RCP 8.5
 GFDL-CM3 Regulated RCP 4.5
- GFDL-CM3 Naturalized RCP 4.5

Bias Corrected Forcing Fields Provided by Ouranos

- All forcing fields converted into format to use for forcing the NEMO model
- HYPE and Arctic-HYPE output for each scenario set up for NEMO model
- Model run and tested for each scenario with forcing

Naturalized Experiments

Historical Control

Future

- ERA-Interim
- MIROC

- MRI-CGCM3
- GFDL-CM3

MIROC Naturalized RCP 4.5 Completed (2070) **MIROC** Naturalized RCP 8.5 Presently 2057 **MRI-CGCM3** Naturalized RCP 4.5 Presently 2059 **MRI-CGCM3** Naturalized RCP 8.5 Presently 2057 **GFDL-CM3** Naturalized RCP 4.5 Completed (2070)

Completed

Historical (1980-2005) Sea-Ice

Historical (1980-2005) Sea-Ice

Preliminary Historical Run Output

Preliminary Historical Run Output

Winter Circulation

Present Day (2018) Sea-Ice from Future Runs Jennifer Lukovich

Concentration

Thickness

Means

MAN

Standard Deviations

Into the Future (2005-2040) Ice Concentration

Into the Future (2005-2040) Ice Thickness

Into the Future (2005-2040) Top 50 m Temperature

Regulated Experiments

- Historical Regulated
 Experiments
 - To be completed early December 2019
- Future Regulated
 Experiments
 - To be completed early 2020

NCRB + LGRC

Andrew Tefs – BaySys Team 2

BaySys subgroup objectives Lead by J. Lukovich

- Baseline evaluation
 - Evaluation of forcing (atmospheric and discharge) and sea ice conditions in HBC during 2016-2018 timeframe
 - Model/observational data comparisons
- Relative climate change and regulation impacts analysis
 - Standardized characterization of relative climate change and regulation impacts on freshwater/marine coupling using consistent suite of diagnostics for relevant ice and oceanographic variables

SIC Year-month standardized anomalies for HBC